

# FNAL Booster Modeling & Data Comparisons

J.Amundson, P.Spentzouris, FNAL

### **Outline**

- Experimental program objectives
- Studies & comparisons with Synergia
  - Plans/future options



# Objectives

- · Code "reality check"
- Maintain connection with real machine issues
  - drive physics implementation
  - guide simulation input/setup, analysis software
- Have impact on understanding operating accelerators
  - Cannot control all parameters of operating accelerator. Instead, produce a multi-dimensional map of performance vs input parameters & different physics and compare to data
  - Adintain balance of studies & code development!



### Booster studies: a test example

- "Space charge effects responsible for Booster loses at ~1ms", common wisdom
  - physics
- → Study space-charge (begin summer 2002)
- But first, understand machine instrumentation & code performance
  - → calibrate instrumentation response
  - run with "simple" input conditions



# Possibilities for studies (1)

- Measure beam size turn by turn, for different beam currents
- Existing instrumentation:
  - Ionization Position Monitor (IPM)
  - Resistive Wall Monitor (RWM)
- IPM response depends on current, need to calibrate
   -> flying beam!
- \$\times \tag{\text{studies could be parasitic (but is easier to model in DC)}



# Possibilities for studies (2)

- Tune shift as a function of charge
  - cleaner measurement (quad current scan, only beam charge measurement required)
  - harder to model/interpret
    - ... but a nice challenge for the simulation & good motivation for code development
- ⇒ can only be dedicated (DC mode & change of lattice)



# Possibilities for studies (3)

- Profiles from MWPC @ an extraction line
  - running DC, changing extraction time to measure different turn #
  - highly disruptive
- other options not yet considered...
  - is it worthwhile pursuing such highly disruptive options?



# Accomplishments to date

- Developed calibration technique for IPM
  - calibrated horizontal IPM
- Developed analysis tools for raw IPM data
  - have the ability to monitor machine performance
- Study longitudinal profile evolution (RWM)
- Study transverse profile evolution
  - correlate to losses; varying machine conditions
- Study resonance vs machine current
- highlights in the following...



#### Profile measurement studies

I. Single turn injection, 10-42 mA beam current from Linac quad tuning

RF off, machine running DC, use
 RWM, wire and IPM

#### II. Multi-turn injection

RF para phased, machine ramping (IPM, wire and MWPC)



III. Normal machine operation (IPMP)



# "Flying Beam" Wire

# Change time of injected beam relative to ORBMP:



Time/40 ns



Each turn # a different measurement



# Longitudinal PhS using the RWM



Data includes random offset present at multi-turn injection

#### Good qualitative agreement

Data,  $\frac{3}{4}$  turn, 3.75 turns, with 3 turns added





# Longitudinal PhS evolution



#### From single turn experiment:

beam RMS vs turn #

- Model describes data for Dp/p ~ 0.0002
- No space charge effects expected or observed for 11-41 mA

Error bars represent fitting uncertainty only



### How about transverse?



#### Injection line MWPC sigmas





#### IPM calibration





Flying beam wire profiles, good & not-so-good, compared to IPM fitted widths, together with MWPC profiles at extraction (MI8) provide the input to constrain our model of the IPM response (paper submitted to PRSTAB)



#### IPM calibration results



# IPM calibration

uncalibrated width shows apparent growth at injection correlated with the increase of machine current during injection. **Calibration** 

#### Resonance Studies





#### Resonance Studies





Calculating the relationship between measured tune difference (dQ) and the space-charge tune shift ( $\Delta Q_{sc}$ ):

$$\begin{split} Q &= Q_0 + \Delta Q_{sc} + \Delta Q_{quad} \\ \Delta Q_{quad} &= \frac{dQ}{dI} \left( \Delta I_{quad} \right) \\ A &: \ \frac{1}{2} = Q_0 + \Delta Q_{sc}^1 + \frac{dQ}{dI} \left( \Delta I_Q^1 \right) \\ B &: \ \frac{1}{2} = Q_0 + \Delta Q_{sc}^N + \frac{dQ}{dI} \left( \Delta I_Q^N \right) \\ B - A &: \ 0 = \Delta Q_{sc}^N - \Delta Q_{sc}^1 + \frac{dQ}{dI} \left( \Delta I_Q^N - \Delta I_Q^1 \right) \\ \Delta Q_{sc}^N - \Delta Q_{sc}^1 &= \frac{dQ}{dI} \left( \Delta I_Q^1 - \Delta I_Q^N \right) \\ \Delta Q_{sc}^N - \Delta Q_{sc}^1 &= dQ_{(x/y)}^1 - dQ_{(x/y)}^N \end{split}$$



# Transverse beam width measurements and simulation

Turn-by-turn Ionization
Profile Monitor horizontal
beam width
measurements for 11
turns of injected beam
(400 mA total). 15 data
sets are displayed.
Widths are measured in
mm.



simulated beam with 2 times smaller emittance than nominal Booster emittance



#### ORBUMP toy model

Synergia simulation including a simple model of the injection bump fringe fields, compared to IPM data at injection, for an optimal (minimal losses & beam disturbance) bump configuration





#### Simulation reality checks

#### Συν<mark>εργ</mark>εια





#### Mapping Booster response





# Highlights of IPM data taking

- During our attempt to calibrate the IPM and take data with the detector, we discovered a lot of interesting things...
  - effects of injection bump
  - large variation of machine operation
  - the importance of continuous monitoring













The Beam likes to run on the outside at injection! (turned out to be a "local" bump to tune out losses...)



#### Summary

- Have developed the tools needed to monitor Booster with single turn resolution
  - IPM calibration
  - analysis tools for raw IPM data & RWM data
- Have taken data under various conditions (full cycle)
  - have analyzed data ~200 turns after injection and compared to Synergia.
  - qualitative agreement (depending on assumptions)
  - "conventional" sources & space charge contribute to emittance growth

# Summary (2)

- Have analyzed less data than we have collected
  - and it is easy to collect more
- Have modeled fewer cases than we have studied
  - resonance, etc
- It's a manpower/priority issue: we need to keep developing the code, stay on top of the project, etc. Ideally, we should collect data on a regular basis and run different models/cases to match: post-doc?, student?

### Plans summary

- Ready to move to phase II of code development
  - will allow to include more physics
  - better flexibility for current studies
- Start proposal work for next cycle of DOE grants
- Would like to continue comprehensive studies/modeling of Booster
  - will need help to do studies/run simulations
- Adding more physics capabilities will allow modeling of other machines (& studies, assuming support)